7 research outputs found

    Structural analysis of the adenovirus type 2 E3/19K protein using mutagenesis and a panel of conformation-sensitive monoclonal antibodies

    Get PDF
    The E3/19K protein of human adenovirus type 2 (Ad2) was the first viral protein shown to interfere with antigen presentation. This 25 kDa transmembrane glycoprotein binds to major histocompatibility complex (MHC) class I molecules in the endoplasmic reticulum (ER), thereby preventing transport of newly synthesized peptide–MHC complexes to the cell surface and consequently T cell recognition. Recent data suggest that E3/19K also sequesters MHC class I like ligands intracellularly to suppress natural killer (NK) cell recognition. While the mechanism of ER retention is well understood, the structure of E3/19K remains elusive. To further dissect the structural and antigenic topography of E3/19K we carried out site-directed mutagenesis and raised monoclonal antibodies (mAbs) against a recombinant version of Ad2 E3/19K comprising the lumenal domain followed by a C-terminal histidine tag. Using peptide scanning, the epitopes of three mAbs were mapped to different regions of the lumenal domain, comprising amino acids 3–13, 15–21 and 41–45, respectively. Interestingly, mAb 3F4 reacted only weakly with wild-type E3/19K, but showed drastically increased binding to mutant E3/19K molecules, e.g. those with disrupted disulfide bonds, suggesting that 3F4 can sense unfolding of the protein. MAb 10A2 binds to an epitope apparently buried within E3/19K while that of 3A9 is exposed. Secondary structure prediction suggests that the lumenal domain contains six β-strands and an α-helix adjacent to the transmembrane domain. Interestingly, all mAbs bind to non-structured loops. Using a large panel of E3/19K mutants the structural alterations of the mutations were determined. With this knowledge the panel of mAbs will be valuable tools to further dissect structure/function relationships of E3/19K regarding down regulation of MHC class I and MHC class I like molecules and its effect on both T cell and NK cell recognition

    A novel function for Hedgehog signalling in retinal pigment epithelium differentiation.

    No full text
    International audienceSonic hedgehog is involved in eye field separation along the proximodistal axis. We show that Hh signalling continues to be important in defining aspects of the proximodistal axis as the optic vesicle and optic cup mature. We show that two other Hedgehog proteins, Banded hedgehog and Cephalic hedgehog, related to the mouse Indian hedgehog and Desert hedgehog, respectively, are strongly expressed in the central retinal pigment epithelium but excluded from the peripheral pigment epithelium surrounding the ciliary marginal zone. By contrast, downstream components of the Hedgehog signalling pathway, Gli2, Gli3 and X-Smoothened, are expressed in this narrow peripheral epithelium. We show that this zone contains cells that are in the proliferative state. This equivalent region in the adult mammalian eye, the pigmented ciliary epithelium, has been identified as a zone in which retinal stem cells reside. These data, combined with double labelling and the use of other retinal pigment epithelium markers, show that the retinal pigment epithelium of tadpole embryos has a molecularly distinct peripheral to central axis. In addition, Gli2, Gli3 and X-Smoothened are also expressed in the neural retina, in the most peripheral region of the ciliary marginal zone, where retinal stem cells are found in Xenopus, suggesting that they are good markers for retinal stem cells. To test the role of the Hedgehog pathway at different stages of retinogenesis, we activated the pathway by injecting a dominant-negative form of PKA or blocking it by treating embryos with cyclopamine. Embryos injected or treated at early stages display clear proximodistal defects in the retina. Interestingly, the main phenotype of embryos treated with cyclopamine at late stages is a severe defect in RPE differentiation. This study thus provides new insights into the role of Hedgehog signalling in the formation of the proximodistal axis of the eye and the differentiation of retinal pigment epithelium

    Conserved amino acids within the adenovirus 2 E3/19K protein differentially affect downregulation of MHC class I and MICA/B proteins

    No full text
    Successful establishment and persistence of adenovirus (Ad) infections are facilitated by immunosubversive functions encoded in the early transcription unit 3 (E3). The E3/19K protein has a dual role, preventing cell surface transport of MHC class I/HLA class I (MHC-I/HLA-I) Ags and the MHC-I-like molecules (MHC-I chain-related chain A and B [MICA/B]), thereby inhibiting both recognition by CD8 T cells and NK cells. Although some crucial functional elements in E3/19K have been identified, a systematic analysis of the functional importance of individual amino acids is missing. We now have substituted alanine for each of 21 aas in the luminal domain of Ad2 E3/19K conserved among Ads and investigated the effects on HLA-I downregulation by coimmunoprecipitation, pulse-chase analysis, and/or flow cytometry. Potential structural alterations were monitored using conformation-dependent E3/19K-specific mAbs. The results revealed that only a small number of mutations abrogated HLA-I complex formation (e.g., substitutions W52, M87, and W96). Mutants M87 and W96 were particularly interesting as they exhibited only minimal structural changes suggesting that these amino acids make direct contacts with HLA-I. The considerable number of substitutions with little functional defects implied that E3/19K may have additional cellular target molecules. Indeed, when assessing MICA/B cell-surface expression we found that mutation of T14 and M82 selectively compromised MICA/B downregulation with essentially no effect on HLA-I modulation. In general, downregulation of HLA-I was more severely affected than that of MICA/B; for example, substitutions W52, M87, and W96 essentially abrogated HLA-I modulation while largely retaining the ability to sequester MICA/B. Thus, distinct conserved amino acids seem preferentially important for a particular functional activity of E3/19K. The Journal of Immunology, 2010,184: 255-267

    Adenovirus E3/19K promotes evasion of NK cell recognition by intracellular sequestration of the NKG2D ligands, major histocompatibility complex class I chain-related proteins A and B

    Get PDF
    The adenovirus (Ad) early transcription unit 3 (E3) encodes multiple immunosubversive functions that are presumed to facilitate the establishment and persistence of infection. Indeed, the capacity of E3/19K to inhibit transport of HLA class I (HIA-I) to the cell surface, thereby preventing peptide presentation to CD8(+) T cells, has long been recognized as a paradigm for viral immune evasion. However, HLA-I downregulation has the potential to render Ad-infected cells vulnerable to natural killer (NK) cell recognition. Furthermore, expression of the immediate-early Ad gene E1A is associated with efficient induction of ligands for the key NK cell-activating receptor NKG2D. Here we show that while infection with wild-type Ad enhances synthesis of the NKG2D ligands, major histocompatibility complex class I chain-related proteins A and B (MICA and MICB), their expression on the cell surface is actively suppressed. Both MICA and MICB are retained within the endoplasmic reticulum as immature endoglycosidase H-sensitive forms. By analyzing a range of cell lines and viruses carrying mutated versions of the E3 gene region, E3/19K was identified as the gene responsible for this activity. The structural requirements within E3/19K necessary to sequester MICA/B and HLA-I are similar. In functional assays, deletion of E3/19K rendered Ad-infected cells more sensitive to NK cell recognition. We report the first NK evasion function in the Adenoviridae and describe a novel function for E3/19K. Thus, E3/19K has a dual function: inhibition of T-cell recognition and NK cell activation
    corecore